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SUMMARY 

The scope of this paper is to develop the basic equations for a variational formulation which can be 
used to solve problems related to convection and/or diffusion dominated flows. The formulation is 
based on the introduction of a generalized quantity defined as the heat displacement. The governing 
equation is expressed in terms of this quantity and a variational formulation is developed which leads to 
a system of equations similar in form to Lagrange’s equations of mechanics. These equations can be 
used for obtaining approximate solutions, though they are of particular interest for application of the 
finite element method. 

As an example of the formulation two finite element models are derived for solving convection- 
diffusion boundary value problems. The performance of the two models is investigated and numerical 
results are given for different cases of convection and.diffusion with two types of boundary conditions. 
The applications of the developed formulations are not limited to convection-diffusion problems but 
can also be applied to other types of problems such as mass transfer, hydrodynamics and wave 
propagation. 
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INTRODUCTION 

Analytical and numerical solutions of the energy equation have attracted considerable 
attention in a variety of engineering fields due to the wide applicability of this equation. The 
theory for convection or diffusion dominated flows has been well-established and a variety of 
classical approaches exist in the literature for the solution of problems involving convective 
heat transfer. One such solution is given by Price et al.’ Analytical solutions are  valid 
primarily for linear equations in one dimension and their application to problems of practical 
interest presents difficulties due to  the limitations of such solutions. It is because of the 
restrictive nature of the analytical solutions that research efforts have been focused on 
approximate or  numerical solutions of the convection-difiusian equation. 

A review and comparison of available numerical methods can be found in References 2, 3 
and 4. Numerical methods discussed in these papers include both finite differences and finite 
element approximations. Finite difference schemes are the least attractive ones due to  their 
instability and to the presence of numerical diffusion. It has been shown, by a Fourier series 
solution to the convection-diffusion equation,’ that many finite difference schemes fail to 
propagate sharp wave fronts a t  the true flow velocity and due to their inherent artificial 
diffusion a damping of the high frequency harmonics occurs. On the other hand finite 
element schemes have produced more reliable numerical solutions but some of them share 
the same oscillatory and diffusive characteristics with finite difference methods. Another 
disadvantage of some finite element schemes is that they are derived through formulations 
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restricted by the conditions of a particular problem. As a result such schemes are limited in 
application. Some of the papers found in the literature formulate finite element solutions 
based on a variational functionaL6 This approach is found to be of limited application since 
the functional is problem-dependent. A variational approach (Rayleigh-Etz) was also 
considered by Smith et a1.’ to generate finite element solutions of the convection-diffusion 
equation. In the same paper the authors also considered solutions based on the Galerkin 
method. The latter approach is found to have wider applicability to practical problems 
whether advection or diffusion is dominant in the physical problem to be modelled. 

In view of the limitations of certain schemes and the lack of uniformity of existing 
approaches, it is desirable to develop a unified formulation, based on physical consideration, 
which can be used to derive different approximate solutions. Such generalized formulations 
should be derived from the governing equations describing the physical phenomena and they 
should be independent of the conditions of a particular problem. In order to achieve this, 
certain concepts from classical mechanics can be used to derive a variational formulation for 
the convection-diffusion equation. Such a formulation is not restricted to this particular 
equation but it can be applied to other equations governing physical processes as well. 

In the first part of this paper, the basic definitions are introduced and the convection- 
diffusion equation is expressed in terms of a generalized quantity, defined as heat displace- 
ment,’.’ which is similar to a mechanical displacement. With this definition, changes in 
temperature are treated as thermal deformations which are similar to mechanical strains. A 
variational formulation is then derived, based on the principle of virtual work in mechanics, 
and by using generalized co-ordinates the variational equation is written in a form equivalent 
to that of the Lagrange’s equations in mechanics. The generalized form of the derived 
variational equation is applicable to a wide variety of physical problems and it is the 
appropriate equation for obtaining approximate solutions to heat transfer problems. 

In order to demonstrate the applicability of the variational formulations in obtaining 
numerical solutions, the finite element method is used, as an example, in the second part of 
this paper to derive two finite element models for solving initial or boundary value problems. 
The first model is based on a linear approximation of the displacement and the second on a 
third-order approximation. The matrix equation for the linear model is expressed in terms of 
nodal displacements and for the higher order model in terms of nodal displacements and 
nodal temperatures. The matrix coefficients of both models are the same as the ones derived 
by the conventional finite element method (Galerkin) but in the present formulatibn the 
unknown field is the displacement in contrast to temperature of the conventional method. 
One advantage of such presentation is that discontinuities in the temperature field can be 
resolved more accurately. In addition the resulting boundary forces of the present formula- 
tions contribute to the better accuracy of the approximate solutions. 

Numerical results are given in the third part of this paper where a third-order, backward 
finite difference scheme is employed for the solution of the system of ordinary differential 
equations with two types of boundary conditions.” The present results are compared to 
existing analytical solutions and the accuracies and convergence of the two finite models are 
discussed. 

BASIC EQUATIONS 

Consider an incompressible medium in a flow field subjected to external heating. Initially the 
medium is at a uniform temperature To, which will be referred to as the reference 
temperature, and the state at this temperature will be referred to as the reference state. 

The instantaneous absolute temperature is denoted by T, and the difference T- To defines 
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the instantaneous relative temperature At), which is a function of the space co-ordinates and 
time. Let 

be defined as the temperature change per unit temperature To, or the instantaneous relative 
temperature per unit temperature. In the following it will be referred to as the temperature e 
or the dimensionless temperature. 

Assuming a co-ordinate system (xi ,  i = 1,2,3) the temperature field t) satisfies the equation 

where V, is the velocity vector and ki is the thermal difisivity with the property 
k. .  = k.. 

I1 11 

so that kij is a symmetric tensor with six independent components. 
We now define a vector field Hi(%, t) as the heat displacement vector such that 

The summation convention is assumed for repeated indices throughout this paper. Further- 
more, the time derivative of the heat displacement vector is defined by 

. a q  H. =- 
’ at 

where Hi are the components of the displacement vector and they are interpreted as being 
proportional to the local rate of heat flow per unit area. 

In the above definition, equation (3), 8 represents a thermal strain analogous to rnechani- 
cal strain and Hi(x,t), with dimension of a displacement, is similar to a mechanical displace- 
ment. Thus there is a one-to-one correspondence between heat displacement-mechanical 
displacement and temperature-strain. Hence equation (3) can be considered as an holonomic 
constraint in the sense of classical mechanics and must be verified by the physical solution. 
Using the definition from equation (3), equation (2) is written as follows 

a Hi at) -+ ye - ki- = o 
at ax, 

or 

a Hi at) A..-+Aiivi ---- - 0  
‘I at axk a+ 

(41 

The components of the tensor Aij in the last equation are defined as the elements of the 
inverse of the matrix [ k i j ]  and Aij is also a symmetric tensor. Equations (4) and (5) are valid 
either for isotropic or anisotropic thermal diffusivity. 

In the above analysis the thermal flow field is governed by the two equations (3) and (4) 
which, together with the appropriate boundary conditions, provide a complete formulation 
for convective heat transfer. They are analogous to the kinematic relations and the momen- 
tum equations in mechanics. By eliminating Hi between equations (3) and (41 one obtains 
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equation ( 2 )  which describes conservation of energy and heat transfer. In many cases it is 
preferable to use the two separate equations, (3) and (4). One example is the case of 
thermo-mechanical coupling where the use of equations (3) and (4) provides a unified 
derivation of the governing  equation^.^ 

The advantages of introducing the heat displacement vector are more apparent when the 
concept of virtual work is introduced to derive the fundamental form of the variational 
formulation. 

VARIATIONAL FORMULATION 

Following the usual procedures of the principle of virtual work in mechanics, consider that 
the medium is subjected to an arbitrary virtual displacement SH, from the equilibrium 
configuration. The corresponding variations SO are given by 

a 
SO =- (SH,) ax, 

and equation (3) is verified by the variations SH, and 68. Multiplication of equation (5) by 
SH, and integration over the volume v of the medium yields 

[A, ,~+A, ,V, - - -  aHk ax, ax, S H , d v = O  

Integrating by parts and applying the divergence theorem, one obtains 

where q, is the unit normal vector pointing outward at  the boundary surface S. From 
equation (3) one derives 

The scalar E is defined as 

and plays the role of a potential function. Equation (6) is now written as follows 

Equation (9) is considered as a variational principle in a broad sense and it represents a 
fundamental form in contrast to a complementary form. These two forms of variational 
principles are  found in classical mechanin where in a fundamental form the variational 
principle is expressed in terms of displacements and in a complementary form is expressed in 
terms of forces (stresses). A significant advantage of the fundamental form of the variational 
principle, equation (9), is the absence of any space derivative of the temperature in its 
formulation. As a result better accuracy is obtained in the application of approximate 
solutions, especially when discontinuities may be introduced in the temperature field. 

The variational equation, equation (91, can be translated to  a Lagrangian type of equation 
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by introducing generalized co-ordinates defined as 

H, (x,, t) = f-4 (q,,, x,, t )  (10) 
where the generalized co-ordinates q,, are functions of time. The advantage of using 
generalized co-ordinates is that H, may be expresed in different functional forms. Further- 
more, it is always possible to choose the generalized co-ordinates in such a way that from the 
physical standpoint the system is completely described by these co-ordinates. Care should be 
taken when the time derivative of H, is considered, and it should be expressed as 

. aHi dHi  Hi =- q, +- 
84, at  

In terms of arbitrary variations Sqi of the generalized co-ordinates, the corresponding 
displacement field variations are due entirely to the variation 64, as follows 

and the variation of the potential E is then given by 

In view of equations (12) and (13), equation (9) may be written for each arbitrary variation 
6qk as follows 

From equation (11) one derives 

and the second term in equation (14) can be expressed in a simpler form that brings out 
its physical significance as follows 

In view of the symmetric property of the tensor Aii the last relation is valid for both isotropic 
and anisotropic thermal diffusivity. In the latter case Aii is a function of the 4-co-ordinates. 
The volume integral of the right-hand side, in the last equation, has an important physical 
meaning associated with the concept of dissipation. Combining the result from the last 
equation with the third term of equation (14), one obtains 

where 
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and 

H :  = H, + v,e (18) 

The vector represents the total convective and diffusive local rate of heat flow and for the 
case of a solid medium (V ,  = 0) i t  reduces to the vector H, which corresponds to the 
conductive rate of heat flow. Furthermore, the heat flux vector h, is proportional to the 
vector HT and from equation (4) one can derive 

Equation (14) takes the form 

aD aE -+-=Q 
aqk aqk 

where 

The quantity Qk represents generalized thermal forces applied on the boundary S of the 
medium of volume u. The quantity D represents the total dissipation function and equations 
(20) have the same form as those of Lagrangian mechanics for the slow motion of a 
dissipative system with negligible inertia forces. Equations (20) as they were derived are 
quite general in the sense that they can be  applied to different types of media with different 
material properties and they are independent of a co-ordinate system. 

Fquation (20) in its derived form is most suitable for obtaining approximate solutions to 
convective heat transfer problems. The  representation of the unknown field H, by 
generalized co-ordinates depends on the type of problem to be solved and the accuracy 
required in the approximate solution. In one particular case one may choose a linear 
representation in the form of a finite or  infinite series. For such a case the representation 
may be given as a Fourier series or  as an expansion in orthogonal functions. As an example 
of a special case the displacement field is considered to be approximated by a linear 
combination of the generalized co-ordinates as follows 

H,(%* t)=qt(r)fk,(X,) k = 1, n, j = 1 , 2 , 3  (22) 

In equation (22) the coefficients qk(t) represent degrees of freedom and the function fk,(%) 
specifies the extent to which qk(t) participates in the function f f , (x, ,  t ) .  This is a restrictive 
application to  the developed formulation but it is often used in approximate solutions. For 
example, in the finite element analysis equation (22) may be considered as the distribution 
function of the displacement field, where qt can then be taken as the nodal displacements or 
nodal deformations depending on the type of approximation selected. 

Differentiating equation (22) with respect to time and space we obtain 

The scalar E and the invariant D from equations (8) and (17) are expressed in terms of 
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equations (23) as follows 

Substituting the specific forms of E and D from equations (24) into equation (20) one 
obtains 

diiqj + (qii + eii)qi = 0, 
with 

Equations (26) constitute a system of n ordinary differential equations for the unknown field 
parameters qk ( k  = 1, n), which may represent the heat displacement field H,. This system of 
n equations can be solved together with the appropriate boundary condition by any 
numerical method. Thus the foregoing analysis is not restricted to applications of the finite 
element method but is appropriate for applying other numerical schemes as well. Another 
advantage of the derived equations is that they are not restricted to solving convective heat 
transfer problems. By appropriate choice of the variables qk to represent other physical 
quantities, the derived equations can be used to solve problems involving such quantities as 
concentration or velocity fields. Furthermore this formulation can be extended to problems 
governed by equations such as the coupled diffusion momentum equations.’ 

The variational analysis and the Lagrangian equations were derived in a way that is 
independent not only of the frame of reference but also of any particular representation of 
the unknowns. In addition the derivations are independent of any particular boundary 
conditions and the volume and surface integrals are extended to instantaneous geometric 
configurations. As a result the derived formulation is quite general and can be applied to 
problems with different configurations, moving boundaries and isotropic or anisotropic 
properties. 

FINITE ELEMENT ANALYSIS 

In order to demonstrate the application of the finite element method to the previously 
derived variational formulation, two one-dimensional element models are chosen to approxi- 
mate the heat displacement. The first model is a linear element with minimum degrees of 
freedom (LE) and the second is a higher order element with four degrees of freedom (CE), 
known as third order cubic Hermitian. Although both elements are one-dimensional approxi- 
mations, they provide good test cases for the performance of the numerical scheme. An 
extension into the two-dimensional space is easily obtained since the previously derived 
equations are of general form. If the heat displacement is approximated by a third-order 
polynomial 

H(x,  t )  = a,+ a,x + azx2 + a3x3 (28) 

then the temperature 0 is given by 

e(x, t )  = a, + ~ u , x  + 3a3x2 (29) 

where ai are time-dependent coefficients to be determined for each of the element models. 
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Linear element ( L E )  

For the linear element of length 1 the coefficients a, are given by 

ao= HI([), a l=7(H2-H1) ,  a 2 = a 3 = 0  
1 

and the generalized co-ordinates are identified as follows 

q i = H i ,  q2=H2 

where HI and H, are the nodal values of the heat displacement. Thus the linear dependence 
of H on the generalized co-ordinates is expressed as 

H(*, 1)=H,(t)fi(x) 

where f, are the basic functions. Substituting the coefficient equations (28) and (29) yield 

(31) 
X 

H(x,  f ) =  1-- H,(t)+-H,(t) ( 3  1 

and 

(32) 
1 

1 )  = 7 (HA[) -H,(t)) 

Note that within each element 8 varies only with time for the (LE) approximations. 
The matrix coefficients of equation (26) are evaluated in terms of equations (31) and (32) 

as follows: 
1 -1 

diffusion matrix em,,: emn I [ -1 

d m n = - [  Al 2 1 ] 
6k 1 2 mass matrix d,,,,: (33) 

A V  -1  1 
2k - 1  1 convective matrix g,,,,: g,, =- [ 3 

and the thermal forces Q, 

Where A is the cross-sectional area of the element, k is the dihsivi ty  and V is the fluid 
velocity. 

In terms of equations (33), equation (26) yields 

Cubic element ( C E )  

For the cubic Hermitian element the coefficients a, are evaluated from the nodal values of 
H3(xr f) and their spatial derivatives at the nodes, which are the nodal values of the 
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A l k  
’ 420 

4. =- 

313 

221 41’ 131 
54 131 156 -221 

temperature 6(x, t) as follows 

ao=Hl, al=& 

1 
1 a2 = -=? [(e2+2e1)1 - ~(H,-H,)] 

A V  gii=G 

(35) 

-210 421 210 -421 
-421 0 421 -71’ 
-210 -421 210 421 
421 71’ -421 0 

where (Hl, HJ and (O1, 6,) are the nodal values of the heat displacement and temperature 
respectively, and the expressions for H(x, t) and 6(x, t )  are given by 

H(x, t) = fi141 +fizq2 +f1343 +f i4% 

e(x, t) = hllq, + hI2q2 + h1343 + h14‘?4- 

The shape functions fii and hli ( i  = 1,2,3) are given by 

2x2 x3 x2 x3 
I 12 

f12=x--++Ts) f14= --+- 
and 

The generalized co-ordinates qi are identified as follows 

ql=H1, q2=el, q 3 = ~ 2 ,  q4=e2 

The corresponding e, ,  4i and gii are given by 

I36  31 -36 31 I 
e.. =- 
” 301 -36 -31 36 -31 

I 31 -1’ -31 41’1 

I 156 221 54 -1311 

In terms of equations (2714301, equation (22) yields 

(37) 

(39) 
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The matrix coefficients for both element models, equations (34) and (42), are the same as 
the ones obtained through the conventional (Galerkin) finite element method, but the 
unknown nodal quantities of the above equations are different. For the (LE) model the 
solution will yield nodal displacements instead of nodal temperatures which is important for 
many problems. For example, in the case that discontinuities exist in the temperature field, 
as is the case in many practical problems, the displacement model will be more accurate since 
the displacement field in this case is continuous. For the (CE) model the conventional finite 
element method will produce nodal temperatures and their nodal derivatives, which is 
acceptable unless, due to discontinuities in the temperature field the derivatives do not exist. 
In contrast this is not the case for the displacement (CE) model, which will produce nodal 
displacements and temperatures. There is a tradeoff in accuracy when the displacement finite 
element models are used instead of the conventional ones but one should consider the 
advantage of the displacement model in simulating discontinuous temperature fields. 

Although the displacement model has certain advantages over the conventiqnal ones, both 
are very compatible in accuracy and either one of them can be obtained from the previously 
derived variational formulation, since this formulation is given in terms of generalized 
co-ordinates. 

For the solution of a particular problem, the finite element models derived above are 
assembled according to the direct stiffness method to obtain global equations. The formula- 
tion of the overall problem is not complete unless boundary conditions are taken into 
consideration. The system of n equations together with the appropriate boundary and initial 
conditions can be solved by any numerical technique used for solving ordinary differential 
equations. In the following section, the system of equations is solved for two types of 
boundary conditions by using a backward differences in time integration technique. 

NUMERICAL SOLUTION 

Boundary value problem 

The one-dimensional case of convective heat transfer is considered here to evaluate the 
two finite element models introduced previously. In applying the derived finite element 
formulation, the semi-infinite space is approximated by the characteristic length L with a 
time-dependent temperature applied on its boundary. Two different cases of the boundary 
conditions are considered and results are obtained for both element models. 

The governing equation is 
a6 a6 a2e 
at ax ax2 
-+ V - - k - =  0 (43) 

where k is the diffusion coefficient and V is the flow velocity of constant value. 
The initial conditions are 

e(x,o)=o, O = = ~ S L  (44) 
and the boundary conditions are 

a. ~ ( o ,  t)=-+-, T -To t > O  
10 

O(L, t ) = O ,  t > O  

Ti - To 
sin(nt), O < t < t o  

b. O(0, t )  =[T 

(45) 

(0, to< t 

6(L, t )  = 0,  t > O  
(46) 
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The above boundary conditions are just two typical examples that one might encounter in 
physical problems. Other types of boundary conditions can be applied as well. In many 
practical problems it is the case that boundary conditions of the type 

ae c, + c, - + c, e = 0 
ax 

are often encountered. The constants C1, C, and C, are usually related to the physical 
parameters of the particular problems. Such boundary conditions can be implemented in the 
present formulation by expressing the above relation in terms of the heat displacement. For 
example for the linear element approximation the displacement of the boundary nodal point 
will be given as a function of the displacement of the nodal point just inside the boundary. 

At this stage it is expedient to relate the dimensionless variables to the physical variables 
as follows: 

- x  - k  
x = -  t = y t ,  L’ L 

- k  
O - L Z  0 

v--v,  L t - - - t  

O - k  

Here L is the characteristic length, TI is a constant temperature at  the boundary and To is the 
length of time during which TI is applied at the boundary. The equations for the two finite 
element models are written in terms of the above defined dimensionless quantities for 
obtaining numerical solutions. 

Numerical results 

The one-dimensional convective heat transfer problem has been formulated by the 
displacement finite element method and its solution can be obtained from the system of 
ordinary differential equations in matrix form presented in the previous section. For the 
boundary value problem, with given boundary conditions, numerical solutions are obtained 
by using a thud-order backward finite difference approximation. The choice of this scheme 
for solving the system of ordinary differential equations is based on the fact that the scheme 
is unconditionally stable. 

The boundary conditions and the governing equation are transformed due to the dimen- 
sionless quantities as follows: 

Boundary conditions: 

Case I @(O, t) = 1, t > 0;  (48) 

The boundary condition at infinity (x = L )  is the same for all cases 

e(L, t) = 0 

and the initial condition for all cases is 

e(x, 0 )  = 0 
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Table I. Time step sizes for the numerical solution 

ThT Ax At AtJAx ArJAx 

LE 30 1/6 0.0075 0.045 0.27 
CE 20 114 0.0125 0.05 0.2 

Numerical solutions of the governing equation 

JO ae a% 
at ax ax2 
-+VO---&-=O 

are obtained by solving the system of n equations represented by 

Aiiqi + Biiqi = Q,, (5 3) 
where Aij and Bii are the global matrices, given in the terms of equation (33) for the (LE) 
model and equations (39)-(41) for the (CE) model in dimensionless form. After solving for 
the displacements for the (LE) model, the temperature for the ith element can be obtained 
through the relation 

ei = Wo(Hi+l - H i )  i = 1, n (54) 

which is also used to implement the initial and boundary conditions in terms of nodal 
displacements. For the (CE) model, the solution of the system of equations will directly give 
nodal displacements as well as nodal temperatures. 

Numerical results for the above boundary value problems were obtained for the charac- 
teristic length L = 5 ,  divided into TNE = 30 for the (LE) model and TNE = 20 for the (CE) 
one. The corresponding element lengths and the time step sizes used in the numerical 
solutions are given in Table I, and the rate of convergence for both element models is shown 
in Figure 1. The error is evaluated as the absolute error for the particular point x = 1.0 at 
time t = 1.0. 

-20.  
TNE 

Figure 1. Convergence for the numerical solution for M = 0.2, temperature 
errors at x = 1.0 and r = 1.0 
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1 . 1  

I **' 

1.1) 

Figure 2. Temperature time history of x = 1.0, (LE) model, TNE= 30 

Temperature time histories are given in Figures 2-5 for the point at x = 1.0 and the 
temperature distributions as a function of x are given in Figures 6-9 at time t=2.0. 
Temperature time histories presented in Figures 2 and 3 are for the (LE) model and in 
Figures 4 and 5 for the (CE) model. Similarly, temperature distributions for the (LE) model 
are given in Figures 6 and 7 and in Figures 8 and 9 for the (CE) model. In each figure results 
are given for pure convection (KO = 0.0, V, = l - O ) ,  pure diffusion (KO = 1.0, V, = 0-0) and for 
two cases of difksion-convection (KO = 0.1, V, = 1.0) and (KO = 1.0, V, = 1.0). The analyti- 
cal solution for all cases is presented by a solid line in Figures 2, 4, 6 and 8 and only for pure 
convection in Figures 3, 5, 7 and 9. 

Figure 3. Temperature time history at x = 1.0. (LE) model, TNE= 30, to = 1.0 
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Figure 4. Temperature time history at x = 1.0, (CE) model, TNE= 20 

For the first case of boundary conditions, Figures 2, 4, 6 and 8, the numerical solution 
shows good agreement with the analytical one. The oscillations around the discontinuity, 
typical of numerical schemes, damp out as the wave front progresses. The error can be 
controlled by the TNE used. A finer discretization will reduce the error of the numerical 
solution around the discontinuity. This finer discretization can be either uniform or localized 
around the discontinuity. Although the TNE used for both models is rather small, the results 
obtained depict only small errors. 

For the second case of boundary conditions, Figures 3, 5, 7 and 9, to = 1.0 was used which 
corresponds to a half-sine wave propagating through the half-space. For pure convection, the 

I .0 

E 
f 

0.0 

t 
T I N  

Figure 5 .  Temperature time history at x = 1.0, (CE) model, TNE= 20, r, = 1.0 
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319 

2 . 5  3.m 

~ 

Figure 6 Temperature dlstnbution at I = 2.0 for the (LE) model, TNE = 30 

(LE) model propagates the wave with only a small distortion of its shape which is due to 
small numerical dispersion. On the other hand, the (CE) model gives a much better 
approximation of the wave but small oscillations of the numerical solution around the 
discontinuity are still present. These oscillations are inherent in any numerical solution, as 
can be shown by a Fourier analysis, when a discontinuity exists. From the obtained results 
one can observe that there is no error growth followed by unacceptable oscillations. Hence 
both models exhibit good stability characteristics. The oscillations and the error can !x 
minimized by a finer discretization or by introducing some artificial diffusion into the 
numerical solution. However, such an artifically introduced diffusion will not allow a realistic 

I .. 

0.5 s E K 
0.0 

I n 1 s i M  1 
Figure 7 Temperature distribution 31 t = 2 0 for the (CE) model. TNE = 30, to = 1.0 



320 G .  A. KERAMIDAS 

1.0 

8.5 g 
f 

8.8 

ul-44 \ I A 1.0 I 0.1 

OXSTRUE 

Figure 8. Temperature distribution at f = 2.0 for the (CE) model, TNE= 20 

evaluation of the developed finite element models, and will introduce artificial errors when 
true diffusion is present. Many authors have introduced optimization techniques for solving a 
particular problem of interest. The numerical solutions presente4 here are not optimized in 
any way since a true evaluation is sought and the intent is to show the adaptibility of the 
developed method to different problems. 

From the results obtained it can be seen that there is no phase lag between the exact and 
numerical wave forms, and, even for the rather coarse discretization used the shape is well 
approximated. This is due to the non-dispersive character of the models and also due to the 
fact that the two models do not exhibit any dissipation due to numerical diffusion. 

1.8 

8 .5  3 
c 

8.8 
2.5 5 .8  

Figure 9. Temperature distribution at r = 5.0 for the (CE) model, TNE= 20 

I 
Figure 9. Temperature distribution at r = 5.0 for the (CE) model, TNE= 20 
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An increase in the TNE will improve the results for the (LE) model but it will have a very 
small effect to the already very accurate results of the (CE) model. For both cases of 
boundary conditions and all choices of the constants KO and V,, the numerical models 
produced accurate results and the induced waves propagate through the half-space in a very 
satisfactory manner. 

Extensive numerical experiments for the linear model were undertaken by this writer and 
results dealing with the error behaviour will be reported in the near future. 

SUMMARY AND CONCLUSIONS 

A variational formulation for convective heat transfer has been presented in this paper, and 
based on this formulation, two finite models have been developed for the purpose of solving 
problems concerned with the propagation of thermally-induced waves. 

The introduction of a new quantity, defined as heat displacement, is the basis for 
developing a generalized variational formulation. One advantage of such a formulation is 
that it can be used to develop the finite element method as a special application. Further- 
more, due to the generalized nature of the heat displacement and the presentation in terms 
of generalized co-ordinates this formulation can be extended to other types of equations. 
This is a strong point of the derived formulation which is based on concepts of classical 
mechanics and can be considered as a generalized formulation for obtaining approximate 
solutions. Another advantage of the formulation is the thermal force introduced, for which 
one should point out its significance as a boundary force. 

The physical conditions for the semi-infinite space require that 8 + 0 as x + m. Since the 
last nodal point of the finite element approximation of the half-space represents infinity one 
should impose the above condition at this point. The thermal force is then zero due to zero 
temperature. This assumption is not the correct one since the temperature at the last nodal 
point changes as the thermal wave propagates. If one considers the last nodal point as a 
boundary point and the thermal force as a boundary force, which is proportional to the 
temperature at that point, then the conditions at the boundary point are properly adjusted. 
The presence of this boundary force into the formulation produces a much more accurate 
temperature distribution close to the boundary, since it represents the effect of the neglected 
portion of the medium. 

The two finite element models developed in this study were used successfully to solve 
problems involving both convection and diffusion with prescribed boundary conditions for 
the temperature. The ability of the displacement finite element models to simulate accurately 
wave fronts with sharp discontinuities is due to the fact that the discontinuity exists in the 
temperature 8 and not in the displacement H. The basic difference between the conventional 
and the displacement finite element models results in the reduction of the oscillations around 
the discontinuity, particularly for small values of the diffusivity coefficient. Comparison of 
present results with analytical solutions shows the performance of the cubic element model 
to be superior to the linear one. However, the performance of the (LE) model should not be 
underestimated, especially when one considers the crude approximation and the coarse space 
discretization involved. The choice between the two models for specific applications should 
depend on the particular needs of the problem under consideration. 
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